miércoles, 19 de agosto de 2015

Comportamiento monoestable, biestable, estable y metaestable.




El monoestable: es un circuito multivibrador que realiza una función secuencial consistente en que al recibir una excitación exterior, cambia de estado y se mantiene en él durante un periodo que viene determinado por una constante de tiempo. Transcurrido dicho período, la salida del monoestable vuelve a su estado original. Por tanto, tiene un estado estable (de aquí su nombre).



En la Figura 1 se representa el esquema de un circuito multivibrador monoestable, realizado con componentes discretos, cuyo funcionamiento es el siguiente:

Al aplicar la tensión de alimentación (Vcc), los dos transistores iniciarán la conducción, ya que sus bases reciben un potencial positivo a través de las resistencias R-2 y R-3, pero como los transistores no serán exactamente idénticos, por el propio proceso de fabricación y el grado de impurezas del material semiconductor, uno conducirá antes o más rápido que el otro.

Supongamos que es TR-2 el que conduce primero. El voltaje en su colector estará próximo a 0 voltios (salida Y a nivel bajo), por lo que la tensión aplicada a la base de TR-1 a través del divisor formado por R-3, R-5, será insuficiente para que conduzca TR-1. En estas condiciones TR-1 permanecería bloqueado indefinidamente.

Pero si ahora aplicamos un impulso de disparo de nivel alto por la entrada T, el transistor TR-1 conducirá y su tensión de colector se hará próxima a 0 V, con lo que C-1, que estaba cargado a través de R-1 y la unión base-emisor de TR-2, se descargará a través de TR-1 y R-2 aplicando un potencial negativo a la base de TR-2 que lo llevará al corte (salida Y a nivel alto). En esta condición la tensión aplicada a la base de TR-1 es suficiente para mantenerlo en conducción aunque haya desaparecido el impulso de disparo en T.


Biestable: (flip-flop en inglés), es un multivibrador capaz de permanecer en uno de dos estados posibles durante un tiempo indefinido en ausencia de perturbaciones.1 Esta característica es ampliamente utilizada en electrónica digital para memorizar información. El paso de un estado a otro se realiza variando sus entradas. Dependiendo del tipo de dichas entradas los biestables se dividen en:

  • Asíncronos: sólo tienen entradas de control. El más empleado es el biestable RS.
  • Síncronos: además de las entradas de control posee una entrada de sincronismo o de reloj.

Si las entradas de control dependen de la de sincronismo se denominan síncronas y en caso contrario asíncronas. Por lo general, las entradas de control asíncronas prevalecen sobre las síncronas.

La entrada de sincronismo puede ser activada por nivel (alto o bajo) o por flanco (de subida o de bajada). Dentro de los biestables síncronos activados por nivel están los tipos RS y D, y dentro de los activos por flancos los tipos JK, T y D.

Los biestables síncronos activos por flanco (flip-flop) se crearon para eliminar las deficiencias de los latches (biestables asíncronos o sincronizados por nivel).




La metaestabilidad es la propiedad que un sistema con varios estados de equilibrio, tiene de exhibir, durante un considerable período de tiempo, un estado de equilibrio débilmente estable. Sin embargo, bajo la acción de perturbaciones externas (a veces no fácilmente detectables) dichos sistemas exhiben una evolución temporal hacia un estado de equilibrio fuertemente estable. Normalmente la metaestabilidad es debida a transformaciones de estado lentas.

El estado metaestable, aunque teóricamente puede mantenerse indefinidamente, siempre acabará resolviéndose en un valor lógico válido 0 o 1, aunque no es posible saber cuánto tiempo tardará. Un diseño cuidadoso del componente biestable asegurará que el tiempo medio de resolución sea lo suficientemente bajo como para evitar que pueda poner en peligro el funcionamiento correcto del circuito.

 Técnicas de diseño de más alto nivel, como el uso de circuitos sincronizadores consistentes en varios biestables en cascada (diseño síncrono), o de circuitos de handshake, dan mayor robustez al diseño frente al problema de la metaestabilidad, minimizando la probabilidad de que suceda hasta un nivel despreciable. Pese a todo, en circuitos digitales complejos de varios cientos de miles de puertas lógicas y varias señales de reloj asíncronas entre sí, como los presentes en todos los chips digitales que se fabrican en la actualidad, evitar los estados metaestables es un desafío que requiere gran cuidado por parte del diseñador.





No hay comentarios:

Publicar un comentario